1 Fisikawan. Istilah "ilmuwan" diciptakan oleh seorang filsuf dan sejarawan sains, William Whewell, pada tahun 1833. Namun, baru pada akhir abad ke-19 istilah ini mulai digunakan secara teratur. Seorang ilmuwan adalah seorang profesional yang melakukan pengamatan yang cermat dan melakukan penelitian untuk memajukan pengetahuan di bidang Banyaknya bakteri pada saat tertentu pada soal di atas mempunyai pola barisan geometri. Pada awal pengamatan ada bakteri, sehingga banyak bakteri pada pembelahan pertama didapat Selama hari maka bakteri akan mengalami sebanyak kali pembelahan. Rumus suku ke- pada barisan geometri adalah Sehingga Karena setelah 2 hari dari jumlah bakteri mati sehingga sisa bakteri pada hari ke- adalah Dari hari ke- sampai hari ke- bakteri mengalami kali pembelahan sehingga jumlah bakteri menjadi Jadi, banyak bakteri pada hari ke- adalah bakteri. Seorangpeneliti melakukan pengamatan terhadap bakteri tertentu. Setiap 1/2 hari bakteri membelah diri menjadi dua. Pada awal pengamatan terdapat dua bakteri. Jika setiap 2 hari 1/4 dari jumlah bakteri mati, banyak bakteri setelah tiga hari adalah 96 bakteri. PEMBAHASAN Mahasiswa/Alumni Universitas Galuh Ciamis12 Januari 2022 1338Halo Fatwadika, jawaban untuk soal ini adalah 576. Soal tersebut merupakan materi barisan geometri. Un adalah suku ke-n pada barisan dan deret. Perhatikan perhitungan berikut ya. Rumus mencari rasio Rasio adalah nilai pengali pada barisan dan deret. Rumus untuk mencari rasio pada barisan geometri dan deret geometri r = Un Un-1 dengan r = rasio Un = suku ke-n Un-1 = suku ke - n-1 Mencari suku ke -n Un Un = ar^n-1 Diketahui, Setiap hari bakteri membelah diri menjadi 2 Pada awal pengamatan terdapat 8 bakteri Setiap 3 hari, 1/4 dari jumlah bakteri mati Ditanyakan, Banyak bakteri setelah 1 minggu adalah... Dijawab, Setiap hari bakteri membelah diri menjadi 2 r = 2 Pada awal pengamatan terdapat 8 bakteri U1 = a = 8 Setiap 3 hari, 1/4 dari jumlah bakteri mati Hari pertama = suku ke 2 U2 hari kedua = suku ke 3 U3 hari ketiga = suku ke 4 U4 U4 = ar^4-1 = ar³ = 8 × 2³ = 8 × 8 = 64 1/4 dari jumlah bakteri mati 1 - 1/4 = 4/4 - 1/4 = 4-1/4 = 3/4 3/4 bakteri masih hidup, maka 3/4 × 64 = 3 × 64/4 = 192/4 = 48 Karena tersisa 48 bakteri maka U1 = a = 48 Setiap 3 hari, 1/4 dari jumlah bakteri mati Hari keempat = suku ke 2 U2 hari kelima = suku ke 3 U3 hari keenam = suku ke 4 U4 Bakteri setelah 6 hari U4 = ar^4-1 = ar³ = 48 × 2³ = 48 × 8 = 384 1/4 dari jumlah bakteri mati 1 - 1/4 = 4/4 - 1/4 = 4-1/4 = 3/4 3/4 bakteri masih hidup, maka 3/4 × 384 = 3 × 384/4 = = 288 Karena tersisa 288 bakteri maka U1 = a = 288 7 hari = 1 minggu Banyak bakteri hari ke 7 U2 = ar^2-1 U2 = ar U2 = 288 2 U2 = 576 Sehingga dapat disimpulkan bahwa, banyak bakteri setelah 1 minggu adalah 576. Terima kasih sudah bertanya, semoga bermanfaat. Terus gunakan Roboguru sebagai teman belajar kamu yaŸ˜Š Ternyatabakteri MRSA telah masuk dan bergerak cepat menggerogoti dagingnya. Dalam waktu 60 jam jarinya habis dimakan bakteri. Tanya tertular bakteri pemakan daging dan 9 dokter harus bekerja mati-matian untuk menyelamatkan hidupnya. Para dokter menyaksikan bagaimana bakteri mematikan itu melompat dari lengan ke dadanya tepat di depan mata mereka. MDMaya D21 Januari 2020 2217BerandaUTBK/SNBTMatematikaseorang peneliti melakukan pengamatan terhadap bak...MDMaya D21 Januari 2020 2217Pertanyaanseorang peneliti melakukan pengamatan terhadap bakteri tertentu. setiap 1/2 hari bakteri membelah diri menjadi dua. pada awal pengamatan terdapat 2 bakteri. jika setiap 2 hari 1/4 dari jumlah bakteri mati, banyak bakteri setelah tiga hari adalah581Mau jawaban yang terverifikasi?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS! Merupakanupaya melakukan kuantifikasi atau proses patologis atas kejadian untuk mengukur besarnya kejadian/masalah serta untuk melakukan perbandingan. Setiap pengamatan yang sistematis terhadap pola penyakit di dimulai dari analisis data sekunder dan primer yang telah terkumpul. 2. Distribusi
Mahasiswa/Alumni Institut Pertanian Bogor26 November 2021 2036Halo Kasih G, kakak bantu jawab ya.... Jawaban yang benar untuk pertanyaan tersebut adalah A. Perhatikan penjelasan berikut ini! Banyaknya bakteri pada saat tertentu pada soal di atas mempunyai pola barisan geometri. Pada awal pengamatan ada 20 bakteri, sehingga banyak bakteri pada pembelahan pertama didapat a=U1=20 bakteri r = 2 setiap 15 menit Selama 1 jam maka bakteri akan mengalami sebanyak 1 jam 15 menit yaitu 4 kali pembelahan. Rumus suku ke-n pada barisan geometri adalah Un= ar^n-1 Sehingga U4=20 x 2^4-1=20 x 2^3= 20 x 8=160 bakteri karena setiap satu jam sebanyak seperempat dari populasi bakteri tersebut dimatikan, maka sisa populas bakteri setelah 1 jam adalah 1 - 1/4 x 160 = 120 bakteri Dari 1 jam pertama sampai 2 jam pertama bakteri mengalami 4 kali pembelahan sehingga jumlah bakteri menjadi 120 x 2^4=120 x 2^4=120 x 16 = bakteri karena setiap satu jam sebanyak seperempat dari populasi bakteri tersebut dimatikan, maka sisa populas bakteri setelah 2 jam adalah 1 - 1/4 x = bakteri Dari 2 jam pertama sampai 2,5 jam pertama bakteri mengalami 2 kali pembelahan sehingga jumlah bakteri menjadi x 2^2= x 4 = bakteri Dengan demikian, banyaknya bakteri yang masih hidup setelah 2,5 jam adalah bakteri. Oleh karena itu, jawaban yang benar adalah A.
Dalammelakukan pengamatan di laboratorium, tentu objek yang diamati terkadang memiliki berbagai macam karakteristik. Jika Anda adalah seorang peneliti atau orang yang bekerja di laboratorium pasti sudah akrab dengan mikroskop, fungsi mikroskop ini cukup penting karena mikroskop ini berfungsi untuk mengamati san mempelajari berbagai macam

diterbitkan 0440 Biologi Mangsur5500 Menjawab Menjawabил Noviaad5828 jawaban Jawab12 bakteriPenjelasan dengan langkah-langkah Menjawab Menjawabил Ababl4526 jawaban jawaban96 bakteriPenjelasan dengan langkah-langkahMaaf Kalo SalahSemogaBermanfaat❣☘SelamatBelajar✪✪/ Menjawab Menjawabил aobinaobin15 jawaban Terlampir pada gambar ya kak. Pertanyaan Lain Biologi fathurrahman07 - 0152 dinantiputri38 - 1930 DevaMantap123 - 1643 fhiraa66 - 0623 KellyVeisa - 0623 Misshb321 - 0440 rifkialfaris132 - 0848 susanto90 - 0912 gina2337 - 0048 cigul7862 - 0830

Seorangpeneliti melakukan pengamatan terhadap bakteri tertentu. Setiap 1/2 hari bakteri membelah diri menjadi dua. Pada awal pengamatan terdapat 2 bakteri. Jika setiap 2 hari 1/4 dari jumlah bakteri mati, banyak bakteri setelah tiga hari adalah Deret Geometri; Barisan; ALJABAR; Matematika
Bakteri membelah diri menjadi dua setiap hari. Sehingga dalam 2 hari pertama, bakteri membelah diri sebanyak 4 kali. Karena banyak bakteri pada awal pengamatan adalah 2 bakteri, maka setelah 2 hari menjadi Namun dalam 2 hari tersebut, dari jumlah bakteri mati. Sehingga banyak bakteri yang mati setelah 2 hari adalah Maka banyak bakteri yang masih hidup setelah 2 hari adalah Kemudian ditanyakan banyak bakteri setelah tiga hari, atau satu hari setelah hari kedua. Dalam satu hari, bakteri membelah diri sebanyak 2 kali. Sehingga didapatkan banyak bakteri setelah 3 hari adalah
1N8Z.
  • ng065u5iqw.pages.dev/160
  • ng065u5iqw.pages.dev/179
  • ng065u5iqw.pages.dev/296
  • ng065u5iqw.pages.dev/437
  • ng065u5iqw.pages.dev/467
  • ng065u5iqw.pages.dev/305
  • ng065u5iqw.pages.dev/530
  • ng065u5iqw.pages.dev/426
  • seorang peneliti melakukan pengamatan terhadap bakteri tertentu